Skip to main content
 首页 » 音响器材

函数的定义域(函数的定义域总结的分类)

2026-02-05 19:50:174152

今天给各位分享函数的函数函数定义域的知识,其中也会对函数的定的定的分定义域总结的分类进行解释,如果能碰巧解决你现在面临的义域义域问题,别忘了关注本站,总结现在开始吧!函数函数

什么叫函数的定义域

什么叫函数的定义域?函数定义域是指该函数的有效范围,其关于原点对称是义域义域指它有效值关于原点对称 。以下是总结我为大家整理的关于函数的定义域,欢迎大家前来阅读!

函数的函数函数定义域

(高中函数定义)设A,B是定的定的分两个非空的数集,如果按某个确定的义域义域对应关系f,使对于集合A中的总结任意一个数x,在集合B中都有唯一确定的函数函数数f(x)和它对应,那么就称f:A--B为集合A到集合B的定的定的分一个函数,记作y=f(x),义域义域x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;

如果一个函数是具体的,它的定义域我们不难理解。但如果一个函数是抽象的,它的定义域就难以捉摸。

例如:y=f(x) 1≤x≤2与y=f(x+1)的定义域相同吗?值域相同吗?如果已知f(x)的定义域是x∈ [1,2],f(x+1)的定义域是什么?

因为f(x)的定义域是 x ∈ [1,2],即是说对1≤x≤2中的每一个数值f(x)都有函数值,超出这个范围内的任何一个数值f(x)都没有函数值。例如3就没有函数值,即f⑶就无意义。因此,当x+1的取值超出了[1,2]这个范围,f(x+1)也就没有了函数值,所以f(x+1)的定义域是1≤x+1≤2这个不等式的解集,也就是说f(x+1)中x+1的值域是f(x)的定义域,又由于1≤x+1≤2故f(x+1)的值域与f(x)(1≤x≤2)的值域也就自然相同了。

看是不是同一个函数,因为都是f(),所以是同一个

(是不是统一函数只要看()前面的字母是不是同一个,注意大小写也要一样才是同一函数)

题目中的“已知函数f(x)”中的x是一个抽象的概念,

x可以代替f()括号中任意表达式,

如果他的定义域是(a,b)

那么,x+m和x-m的定义域(定义域都是指括号内x的取值范围)都是(a,b)

就高中课程而言,函数定义域是说函数f(x)中,x的取值范围。

二、求函数的定义域:

求函数的定义域:

y=1/x 分母不等于0;

y=sprx 根号内大于等于0;

y=logaX 对数底数大于0且不等于1,真数大于0;

函数定义域简介

f(x)是函数的符号,它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。

函数定义域认识

我们可以从以下几个方面来认识f(x)。

第一:对代数式的认识。每一个代数式它的本质就是一个函数。象x2-1这个代数式,它就是一个函数,其自变量是x,对x的每一个值x2-1都有唯一的值与之对应,所以x2-1的所有值的集合就是这个函数的值域。

第二:对抽象数的认识,对于一个没有具体解析式的抽象函数,由于我们不知道它的具体对应法则也难以知道它的自变、定义域、值域,很难理解它的符号及其意义。

例如:f(x+1)的自变量是什么呢?它的对应法则还是f吗?f(x+1)的自变量是x,它的对应法则不是f。

我们不妨作如下假设,如果f(x)=x2+1,那么f(x+1)=(x+1)2+1,f(x+1)与(x+1)2+1这个代数式相等,即:(x+1)2+1的自变量就是f(x+1)的自变量。(x+1)2+1的对应法则是先把自变量加1再平方,然后再加上1。

再如,f(x)与f(t)是同一个函数吗?

只须列举一个特殊函数说明。

显然,f(x)与f(t)它们的对应法则是相同的,如果x的取值范围与 t的取值范围是相同的,则f(x)与f(t)就是相同的函数,否则,它们就是对应法则相同而定义域不同的函数了。

例:已知f(x+1)=x²+1 ,f(x+1)的定义域为[0,2],求f(x)解析式和定义域

设x+1=t,则;x=t-1,那么用t表示自变量f的函数为:(也就是把x=t-1代入f(x+1)=x²+1中)

f(t)=f(x+1)=(t-1)²+1

=t²-2t+1+1

=t²-2t+2

所以,f(t)=t²-2t+2, 则f(x)=x²-2x+2

或者用这样的 方法 ——更直观:

令 f(x+1)=x²+1 中的x=x-1,这样就更直观了,把x=x-1代入 f(x+1)=x²+1,那么:

f(x)=f[(x-1)+1]=(x-1)²+1

=x²-2x+1+1

=x²-2x+2

所以,f(x)=x²-2x+2

而f(x)与f(t)必须x与t的取值范围相同,才是相同的函数,

由t=x+1,f(x+1)的定义域为[0,2],可知道:t∈[1,3]

f(x)=x²-2x+2的定义域为:x∈[1,3]

综上所述,f(x)=x²-2x+2(x∈[1,3]

函数定义域区别值域

值域定义

函数中,因变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

常用的求值域的方法

(1)化归法;(2)图象法(数形结合),

(3)函数单调性法,

(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等[1]

函数定义域误区介绍

关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?

函数的定义域

定义域 指该函数的有效范围,其关于原点对称是指它有效值关于原点对称 。函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。例如:函数y=2x+1,规定其定义域为-10,10,是对称的。

中文名

f(x)是函数的符号(y),f代表法则,y它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。x是自变量,它代表着函数图象上每一点的横坐标,自变量的取值范围就是函数的定义域。f是对应法则的代表,它可以由f(x)的解析式决定。例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。

函数的定义域是什么?

函数的定义域就是使函数有意义的自变量的取值集合

1,对于函数是整式结构,没有特殊说明,定义域为R

例:y=X^2+3X-5,定义域为R

2,分式结构,分母不为零

例:y=(3x+5)/(x^2-1)

函数要有意义则x^2-1≠0∴x≠±1

∴定义域为{ x|x∈R,且x≠±1}

3,开偶次方根被开方数大于等于0

例:y=√(x^2-x-2)

函数要有意义则x^2-x-2≥0∴x≥2或x≤-1

∴定义域为{ x|x≥2或x≤-1}

再来个综合的

例:y==[√(x^2-x-2)]/(x^2-1)

函数要有意义则x^2-x-2≥0 ① x^2-1≠0②

∴定义域为{ x|x≥2或x<-1}(对两个不等式求交集)

4,对数函数要注意真数大于0,底数大于0且不等到于1这些都是有意义的条件

例:y=log2 (x^2-x-2) (x^2-x-2是真数,2是底数)

函数要有意义则x^2-x-2>0

所以定义域为{ x|x>2或x<-1}

若底数含有自变量则底数大于0且不等到于1

5,若是指数为0函数,底数不能为0

例;y=(2x-1)^0

则定义域为{ x|x≠1/2}

总之定义域是函数有意义的自变的范围,若是实际应用题还要符合实际意义.

一般函数的定义域,要全

一般函数的定义域:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数中;余切函数中;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

扩展资料:

函数是一个集合元素到令一个集合元素的对应关系,它起着一种映射和变换的功能,如在数学中,一个集合A, 若对A中的每个元素x,按对应法则f,使B中存在唯一的一个元素A与之对应 , 就称对应法则f是X上的一个函数,记作B=f(x)。

广义地说,函数是完成某一功能的工具,如在数学中,该功能就是用来实现数学运算的,就是数学函数,故一般函数是完成某一工程中基础工具,起着基础功能,故一般函数就是一个功能区能完成基本功能的工具。

参考资料来源:百度百科—一般函数

函数的定义域的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于函数的定义域总结的分类、函数的定义域的信息别忘了在本站进行查找喔。

评论列表暂无评论
发表评论